

Datasheet

2088 shell high temperature

digital pressure transmitter

SUP-PX400G

Committed to process automation solutions

E-mail: info@supmea.com

www.supmea.com

Datasheet

2088 shell high temperature digital pressure transmitter SUP-PX400G

Imported high precision and high stability pressure sensitive chips are selected for diffused silicon pressure transmitter. Sensitive chips are fabricated by advanced micro-mechanical etching process, which forms Wheatstone bridge by diffusing four high-precision resistors with temperature compensation on silicon wafers. Because of piezoresistive effect, there are some changes on the resistance values of the four bridge arm resistance, so as to make the bridge unbalanced, and then the sensor outputs an electric signal corresponding to the change of pressure. The output electric signal is compensated by amplification and non-linear correction circuit, which generates voltage and current signals which correspond linearly to the input pressure.

Applications

- Industrial process control
- Petroleum industry
- Chemical industry
- Paper industry
- Metallurgy

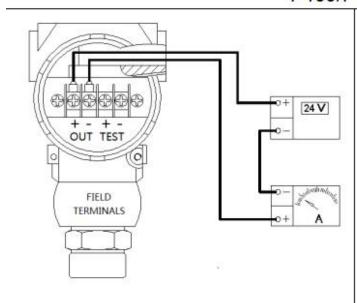
Features

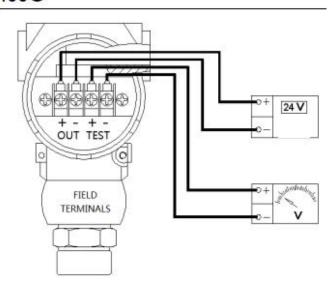
- Compact structure and easy to install.
- Advanced diaphragm/oil-filled isolation technology.
- High stability and reliability.
- Seismic resistance and anti-radio frequency interference.
- 316L stainless steel isolation diaphragm structure.
- High precision, all stainless steel structure.
- Micro-amplifier, voltage and current signal output.
- Strong anti-interference and long-term stability.
- Variety of process connections are available.
- Wide range of measurement.
- Anti-vibration and anti-impact.

2088 shell high-temperature digital pressure transmitter

Principle

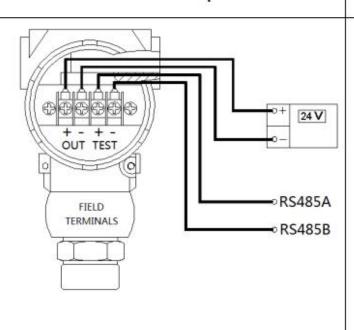
Pressure Transmitter are devices that convert the mechanical force of applied pressure into electrical energy. This electrical energy becomes a signal output that is linear and proportional to the applied pressure. And a transmitter sends signals in milliamps (mA). At present, various types of pressure sensors, such as diffused silicon, capacitive, silicon sapphire, ceramic thick film, metal strain electric type are widely used in various industries. SUP-P300 is diffused silicon type pressure transmitter.


Parameters					
Power Supply	12V~32V ((4~20) mA ,with display)				
	10V~32V ((4~20) mA+RS485, with display)				
	9V~32V ((4~20) mA, without display)				
Output	(4~20)mA;(1~5)V;(0~10)V;(0~5)V;RS485				
Accuracy	0.2%、0.25%、0.5%				
Measurement range	-0.1060Mpa				
Pressure type	Gauge pressure, adiabatic pressure and sealed pressure				
Compensation temperature	-10℃~70℃				
Working temperature	-20 ℃~85℃				
Medium temperature	-20 ℃ ~85 ℃				
Storage temperature	-40℃~85℃				
Zero-point temperature drift	±0.3%FS/10℃				
Sensitivity temperature drift	±0.3%FS/10℃				
Overload pressure	(0.035~10)MPa (150%FS); (10~60)MPa (125%FS)				
Long-term stability	±0.2%FS/year				
Response time	RS485 output≤100ms (up to 90%FS)				
	Current and Voltage output≤10ms (up to 90%FS)				
Insulation	20MΩ/250VDC				
Ingress protection	IP65				
Load Resistance	(U-9V)/0.02A				

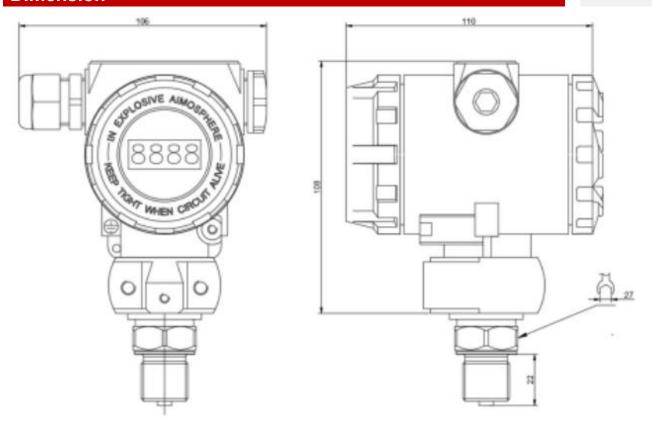


Wiring

Wiring of DIN connector type as follows:


P400/P400G

Current output


Voltage output

RS485 output

Dimension

P400 with display

Installation

Installation

- (1) Pressure transmitter should be installed as far as possible in the place where temperature fluctuation is small, while avoiding vibration and shock.
- (2) The pressure transmitter can be directly installed at the measuring point. Connection threads: M20*1.5 or 1/2-NPT. Flange Interfaces of various specifications for special purposes.
- (3) Transmitter is suitable for measuring the pressure of various general corrosive liquids and gas. Transmitters manufactured according to explosion-proof requirements can be used in different explosive environments according to the explosion-proof grade of products, and their related equipment should also have explosion-proof function. For strong corrosive medium (such as acid, alkali) and corrosion resistant structure, the orders should be placed according to special requirements.
- (4) Do not route the signal line through the conduit or the open cable with the power line, or near high-power equipment.
- (5) If the pressure pipes are used in the transmitter, attention should be paid to that the strong corrosive or superheated media should not contact the transmitter, so as to prevent the sediment from precipitating in the pressure pipes, and the pressure pipes should be as short as possible. When measuring steam or other high temperature medium, the working temperature of the transmitter should not exceed the limit. When used for steam measurement, the pressure pipes should be filled with water to prevent the transmitter from contacting directly with the steam.

Ordering code

1A -100	nrecuire
Pressure Type A absolute -100	nreccure
1A absolute	pressure
	e pressure
	0-0kPa
1B -100-	100kPa
1C -100-1	1000kPa
1L 0-1	0kPa
1M 0-2	0kPa
1N 0-3	0kPa
1Q 0-5	0kPa
	00kPa
2A 0-0.	6MPa
Measurement Range 2B 0-1	MPa
	6MPa
2D 0-2.	5MPa
2E 0-4	MPa
2H 0-10	0MPa
	0MPa
2L 0-25	5MPa
2M 0-30	0MPa
2N 0-40	0MPa
XX	ther
K 0.5	Class
Accuracy G 0.25	Class
· ·	Class
A1 Two-wir	e 4-20mA
RS485,	24VDC
Onioni and Power Shooty	3485, 24VDC
	ther
	3
5	5
Heat sink 7	7
9	ther
	0×1.5
	1/2
	1/4
Thread Type NA NP	T1/4
	T1/2
	4×1.5
	hwe
	s, 304SS

В			316LSS, 316LSS
X			other
Electrical Interface, Housing Material, and Ingress	W1		M20×1.5 Cable Gland, Aluminum
Protection	VV I		Alloy, IP65
		PA	Threaded Base Carbon Steel CS
Accessories		PB	304SS Thread Base
		PD	304SS Condensation Bend